Basis Functions
BasisFunctionComputation
Bases: AbstractKernelComputation
Compute engine class for finite basis function approximations to a kernel.
gram
For a given kernel, compute Gram covariance operator of the kernel function
on an input matrix of shape (N, D).
Parameters:
-
kernel(K) βthe kernel function.
-
x(Num[Array, 'N D']) βthe inputs to the kernel function of shape
(N, D).
Returns:
-
DenseβThe Gram covariance of the kernel function as a linear operator.
cross_covariance
For a given kernel, compute the cross-covariance matrix on an a pair
of input matrices with shape (N, D) and (M, D).
Parameters:
-
kernel(K) βthe kernel function.
-
x(Num[Array, 'N D']) βthe first input matrix of shape
(N, D). -
y(Num[Array, 'M D']) βthe second input matrix of shape
(M, D).
Returns:
-
Float[Array, 'N M']βThe computed cross-covariance of shape
(N, M).
diagonal
For a given kernel, compute the elementwise diagonal of the NxN gram matrix on an input matrix of shape NxD.
Parameters:
-
kernel(AbstractKernel) βthe kernel function.
-
inputs(Float[Array, 'N D']) βThe input matrix.
Returns
Diagonal: The computed diagonal variance entries.
compute_features
Compute the features for the inputs.
Parameters:
-
kernel(K) βthe kernel function.
-
x(Float[Array, 'N D']) βthe inputs to the kernel function of shape
(N, D).
Returns:
-
Float[Array, 'N L']βA matrix of shape \(N \times L\) representing the random fourier features where \(L = 2M\).